On August 7, 2015

The Outside Story: Keeping it clean downstream

 

By Declan McCabe

In peaceful streams, aquatic macroinvertebrates such as crayfish, stoneflies, and caddisflies travel over and under submerged rocks, foraging for other invertebrates, leaves, and algae. When rain falls, their world turns upside down. At first only the surface is disturbed, but before long, runoff reaches the stream and increases its flow manyfold. Silt and sand blast every exposed rock surface. At peak flow, boulders are propelled downstream by powerful currents.

How do small creatures survive such crushing chaos? They hunker down. Water-filled nooks and crannies extend deep below streambeds and far beyond riverbanks. These deep interstices provide a safe haven even while turbulent water pulverizes the riverbed, comparable to a storm cellar in a tornado.

Storm water has great destructive potential, but it also flushes and cleans aquatic habitats. Riverbeds are rejuvenated when sediment is flushed from the bottom and deposited on floodplains. Algae and bacteria grow back rapidly on the scoured rocks. Macroinvertebrates climb out of their cellars and return to foraging. The cycle of storm, recovery and regrowth is the natural state.

You can see the effects of this cycle yourself by looking at river rocks. In a healthy stream, you’ll find rocks perched on other rocks, with the streambed visible under the water, and little silting. Although, just after a storm, the rocks may be scoured clean, they’ll soon develop a slimy covering of algae and host a diversity of tiny creatures.

In polluted streams, however, you’re likely to find something different. River rocks may be embedded in silt, and when you pick them up, you’ll find that they’re wearing bathtub rings, with algae only growing on the upper half.

Poorly planned development disrupts the cycle of streambed renewal. Where streambanks are bare, erosion can be a big problem. Soil lost from overgrazed or overcropped land ends up in the water, where it plugs the streambed nooks and crannies. Imagine a concrete truck unloading through your window, and filling your home with a solidifying mess. Only the hardiest of invertebrates survive these conditions, and the whole riverine food chain can be affected.

Traditional paving and buildings also create problems, as impervious surfaces dramatically increase the volume of water sent straight to streams. Formerly small, cool, perennial streams can become torrents of unnaturally warm water. Channels become deeper and eroded materials are deposited in stream beds. Since rain doesn’t reach the ground underneath the pavement, ground water can become depleted, and the streams may run dry between rain storms.

Farming or urbanization won’t disappear, but there are ways to intelligently develop landscapes to better protect streams. For example, St. Michael’s College, where I work, has installed a system of curbed parking lots connected to rain gardens. These are shallow, gravel-lined depressions, strategically planted with vegetation that tolerates occasional submersion. The rain gardens easily absorb water from typical rainstorms and can even contain all of the water dropped during 100-year storm events. St. Michael’s has also replaced many impervious sidewalks with attractive, pervious, bricked footpaths. Roof water from the gymnasium runs into deep gravel beds. Runoff from recently constructed roads collects in an underground tank. All of these systems drain gradually into the ground, drastically reducing the downstream potential for erosion. The recharged groundwater keeps a small perennial stream flowing to the Winooski River even during dry spells.

There is no doubt that people affect stream macroinvertebrates and the fish that they sustain. We do, however, have the choice to protect our streams by thoughtfully managing our impacts and reducing erosion in urban and agricultural settings. There’s a lot of room for ingenuity between paradise and a paved parking lot (with respect to Joni Mitchell).

Declan McCabe teaches in the biology department at Saint Michael’s College. He works with student research teams to better understand the insect communities in Lake Champlain and its tributaries. The illustration for this column was drawn by Adelaide Tyrol. The Outside Story is assigned and edited by Northern Woodlands magazine and sponsored by the Wellborn Ecology Fund of New Hampshire Charitable Foundation: wellborn@nhcf.org

Do you want to submit feedback to the editor?

Send Us An Email!

Related Posts

Shaping what’s ahead

January 15, 2025
History tends to demonstrate that humans aren’t too fond of change. Sure, we progress and adapt over time and with technology, but do we fundamentally change? Not much. Rather than change and actively work towards a better future, we tend to dwell on the past. Make sure things are great again. The good ol’ days,…

‘The Brutalist’ is a monumental achievement in film

January 15, 2025
With home viewing becoming the preferred way to watch movies, it’s a rare delight to encounter a film that demands to be seen in a theater. Brady Corbet’s "The Brutalist" is one such film. This 215-minute epic, shot in stunning VistaVision and presented in 70mm, is a cinematic experience that makes the journey to the…

Working it out on the skin track

January 15, 2025
“How much longer until we get to where you are taking me?” I hear the voice reach out from behind me. We’d been skinning (or climbing uphill with our skis on) for about an hour when my ski sister finally decided to ask where we were going. We had started with some work road and…

The sweet sound of success: ‘Norman’s Rare Guitars Documentary’

January 15, 2025
In September of last year, I put my son on a flight to Australia, where he would spend the next month backpacking throughout t that country’s eastern coast. He then flew to Bangkok, Thailand, for another month, this time enjoying the jungles and beaches in the surrounding regions. Finally, he concluded his Pacific trek with…